Canonical Monte Carlo simulation of adsorption of O2 and N2 mixture on single walled carbon nanotube at different temperatures and pressures

نویسندگان

  • Amir Abbas Rafati
  • Sayed Majid Hashemianzadeh
  • Zabiollah Bolboli Nojini
  • Negin Naghshineh
چکیده

Adsorption of pure and mixtures of O(2) and N(2) on isolated single-walled carbon nanotube (SWCNT) have been investigated at the subcritical (77 K) and different supercritical (273, 293, and 313 K) temperatures for the pressure range between 1 and 31 MPa using (N,V,T) Monte Carlo simulation. Both O(2) and N(2) gravimetric storage capacity exhibit similar behaviors, gas adsorption is higher on outer surface of tube, compared to the inner surface. Results are consistent with the experimental adsorption measurements. All adsorption isotherms for pure and mixture of O(2) and N(2) are characterized by type I (Langmuir shape), indicating enhanced solid-fluid interactions. Comparative studies reveal that, under identical conditions, O(2) adsorption is higher than N(2) adsorption, due to the adsorbate structure. Excess amount of O(2) and N(2) adsorption reach to a maximum at each temperature and specified pressure which can be suggested an optimum pressure for O(2) and N(2) storage. In addition, adsorptions of O(2) and N(2) mixtures have been investigated in two different compositions: (i) an equimolar gas mixture and (ii) air composition. Also, selectivity of nanotube to adsorption of O(2) and N(2) gases has been calculated for air composition at ambient condition.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Separation-Based Adsorption of H2 from Binary Mixtures inside Single, Double, Triple Walled Boron-Nitride Nanotubes: A Grand- Canonical Monte-Carlo Study

This study investigates the separation based on adsorption of the binary gas mixture of hydrogen withbiogas (gases: CO2, CH4, O2, N2) and inert gases (gases: He, Ne, and Ar) using single-walled ((7,7), (15,15),(29,29), (44,44), (58,58) and (73,73) SWBNNTs), double-walled ((11,11)@(15,15), (7,7)@(22,22) DWBNNTs)and triple walled ((8,8)@(11,11)@(15,15) and (7,7)@(15,15)@(22,22) ...

متن کامل

Physical adsorption between mono and diatomic gases inside of Carbon nanotube with respect to potential energy

In this paper we have down three theoretical study by using Monte Carlo simulation and Mm+,AMBER and OPLS force field. The calculations were carried out using Hyper Chem professional,release 7.01 package of program. first we have studied the interaction of H2 molecule and He atomwith single-walled carbon nanotube at different temperature. For doing this study we placed H2 andHe in the center an...

متن کامل

Comparison of doped combination zirconium-tungsten, zirconium- molybdenum and molybdenum-tungsten on single-wall vanadium oxide nanotube in hydrogen gas adsorption

In this study, doped vanadium oxide nanotubes were evaluated using different software to study the absorption of hydrogen gas. Vanadium oxide nanotubes are one of the options for absorption and storage hydrogen gas. In this research study for the first time, the Monte Carlo simulation was used to investigate the hydrogen gas absorption behavior in molybdenum-tungsten, molybdenum-zirconium and z...

متن کامل

Adsorption and separation of linear and branched alkanes on carbon nanotube bundles from configurational-bias Monte Carlo simulation

The adsorption and separation of linear C1-nC5 and branched C5 isomers alkanes on single-walled carbon nanotube bundles at 300 K have been studied using configurational-bias Monte Carlo simulation. For pure linear alkanes, the limiting adsorption properties at zero coverage exhibit a linear relation with the alkane carbon number; the long alkane is more adsorbed at low pressures, but the revers...

متن کامل

DFT Investigations for sensing capability of a single-walled Carbon nanotube for adsorptions H2, N2, O2 and CO molecules

Single-walled carbon nanotubes (SWCNTs) have a great deal of attention due to their unique properties. These properties of SWCNTs can be used in various devices such as nanosensors. SWCNTs nanosensors have fast response time and high sensitivity to special gas molecules which is very favorable for important applications. Recently, gas adsorption over outer surface of SWCNTs nanosensors was argu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of computational chemistry

دوره 31 7  شماره 

صفحات  -

تاریخ انتشار 2010